Homogenization and error estimates of free boundary velocities in periodic media

نویسنده

  • Inwon C. Kim
چکیده

In this note I describe a recent result ([14]-[15]) on homogenization and error estimates of a free boundary problem, which describes quasi-static contact angle dynamics on inhomogeneous surface. The method presented here also applies to more general class of free boundary problems with oscillating boundary velocities. Let us define ei ∈ IR, i = 1, ..., n such that e1 = (1, 0, .., 0), e2 = (0, 1, 0, .., 0), ..., and en = (0, ..., 0, 1), and consider a Lipschitz continuous function g : IR → [m,M ], g(x+ ei) = g(x) for i = 1, ..., n with Lipschitz constant L. In this paper we are interested in the behavior, as → 0, of the viscosity solutions u ≥ 0 of the following problem with K = {|x| ≤ 1} and with initial data u0: (P )  −∆xu (·, t) = 0 in {u > 0} −K u t = |Dxu |(|Dxu | − g( )) on ∂{u > 0}

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimates on homogenization of free boundary velocities in periodic media

In this paper we consider a free boundary problem which describes contact angle dynamics on inhomogeneous surface. We obtain an estimate on convergence rate of the free boundaries to the homogenization limit in periodic media. The method presented here also applies to more general class of free boundary problems with oscillating boundary velocities.

متن کامل

Estimates on the convergence rate of oscillating free boundaries

In this paper we consider a free boundary problem which describes contact angle dynamics on inhomogeneous surface. We obtain an estimate on convergence rate of the free boundaries to the homogenization limit in periodic media. The method presented here also applies to more general class of free boundary problems with oscillating boundary velocities.

متن کامل

Homogenization of a Hele-Shaw type problem in periodic and random media

We investigate the homogenization limit of a free boundary problem with space-dependent free boundary velocities. The problem under consideration has a well-known obstacle problem transformation, formally obtained by integrating with respect to the time variable. By making rigorous the link between these two problems, we are able to derive an explicit formula for the homogenized free boundary v...

متن کامل

Homogenization of a Hele-Shaw problem in periodic and random media

We investigate the homogenization limit of a free boundary problem with space-dependent free boundary velocities. The problem under consideration has a well-known obstacle problem transformation, formally obtained by integrating with respect to the time variable. By making rigorous the link between these two problems, we are able to derive an explicit formula for the homogenized free boundary v...

متن کامل

Error estimates in periodic homogenization with a non-homogeneous Dirichlet condition

In this paper we investigate the homogenization problem with a non-homogeneous Dirichlet condition. Our aim is to give error estimates with boundary data in H1/2(∂Ω). The tools used are those of the unfolding method in periodic homogenization.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011